Neural Random Forests
نویسندگان
چکیده
Given an ensemble of randomized regression trees, it is possible to restructure them as a collection of multilayered neural networks with particular connection weights. Following this principle, we reformulate the random forest method of Breiman (2001) into a neural network setting, and in turn propose two new hybrid procedures that we call neural random forests. Both predictors exploit prior knowledge of regression trees for their architecture, have less parameters to tune than standard networks, and less restrictions on the geometry of the decision boundaries. Consistency results are proved, and substantial numerical evidence is provided on both synthetic and real data sets to assess the excellent performance of our methods in a large variety of prediction problems. Index Terms — Random forests, neural networks, ensemble methods, randomization, sparse networks. 2010 Mathematics Subject Classification: 62G08, 62G20, 68T05.
منابع مشابه
Mapping Dieback Intensity Distribution in Zagros Oak Forests Using Geo-statistics and Artificial Neural Network
The first and most important issue in forest drought management is knowledge of the location and severity of forest decline. In this regard, we used geostatistics and artificial neural network methods to map the dieback intensity of oak forests in the Ilam province, Iran. We used a systematic random sampling with a 250 × 200 m grid to establish 100 plots, each covering 1200 m2. The percentage ...
متن کاملCasting Random Forests as Artificial Neural Networks (and Profiting from It)
While Artificial Neural Networks (ANNs) are highly expressive models, they are hard to train from limited data. Formalizing a connection between Random Forests (RFs) and ANNs allows exploiting the former to initialize the latter. Further parameter optimization within the ANN framework yields models that are intermediate between RF and ANN, and achieve performance better than RF and ANN on the m...
متن کاملCustomer churn prediction using improved balanced random forests
Churn prediction is becoming a major focus of banks in China who wish to retain customers by satisfying their needs under resource constraints. In churn prediction, an important yet challenging problem is the imbalance in the data distribution. In this paper, we propose a novel learning method, called improved balanced random forests (IBRF), and demonstrate its application to churn prediction. ...
متن کاملAre Random Forests Truly the Best Classifiers?
The JMLR study Do we need hundreds of classifiers to solve real world classification problems? benchmarks 179 classifiers in 17 families on 121 data sets from the UCI repository and claims that “the random forest is clearly the best family of classifier”. In this response, we show that the study’s results are biased by the lack of a held-out test set and the exclusion of trials with errors. Fur...
متن کاملAn Empirical Comparison of Supervised Learning Algorithms Using Different Performance Metrics
We present results from a large-scale empirical comparison between ten learning methods: SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps. We evaluate the methods on binary classification problems using nine performance criteria: accuracy, squared error, cross-entropy, ROC Area, F-score, p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1604.07143 شماره
صفحات -
تاریخ انتشار 2016